Technical Data

Turret Dimensions

<table>
<thead>
<tr>
<th></th>
<th>Turret size (H × Dia.)</th>
<th>Turret weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>662 mm (594 mm from mounting surface) × 406 mm</td>
<td>60/65 kg with laser designator, sealed and single LRU</td>
</tr>
</tbody>
</table>

Gimbal Specifications

<table>
<thead>
<tr>
<th>Field of Regard</th>
<th>Azimuth: 360° continuous or ±165°</th>
<th>Elevation: -40° to +85° relative to turret base</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slew Rate</td>
<td>Up to 90°/sec</td>
<td>Up to 100°/sec</td>
</tr>
<tr>
<td>LOS Velocity</td>
<td>340 knots</td>
<td></td>
</tr>
<tr>
<td>Gimbals</td>
<td>4-axis gimbals</td>
<td></td>
</tr>
<tr>
<td>Fields of Regard</td>
<td>Azimuth: 360° continuous or ±165°</td>
<td>Elevation: -40° to +85° relative to turret base</td>
</tr>
</tbody>
</table>

Sensors

Thermal Imager

- 3rd generation 3-5 µ FPA
- FOV: 640 x 512 pixels or 1280 x 1024 pixels
- MFOV: 1° x 0.77° or 1.5° x 1.2°
- WFOV: 4.4° x 3.3° or 4.5° x 3.6°
- NFOV: 24° x 18° or 38° x 28.5°

Super Narrow Sensor (Spotter)

- SWIR: 640x512 pixels
- FOV: 0.21° x 0.28°

Day Camera

- Various day color cameras with different telescopes and continuous optical zoom up to x27
- Dual Band VIS color+NIR B&W Full HD 1920x1080 pixels continuous zoom x 27 + digital zoom x 4

FHD Day Camera

- Dual Band VIS (Color) + NIR (B&W), both with 3CCD Full HD 1920x1080 pixels sensor, continuous optical zoom x27, and digital zoom x4

Laser Range Finder (LRF)

- 1.54µm 1-20 continuous PPS Eye-safe class 1/1M

Laser Marker

- 1.06 µm

Laser Spot Detector/Tracker

- Dual band designator: 1.06 µm, LRF: 1.57 µm (Eye safe class 1M)

Advanced Auto-Tracker

- Multi-Target Tracker (MTT), Memory Tracker, Naval Tracker, Aerial tracker

Power Consumption

- Average 300 W (350 Wmax, 550 Wmax with designator), 28 VDC

Interfaces

<table>
<thead>
<tr>
<th>Communication Standards</th>
<th>1553 Mux-bus, RS 422, RS 232, Ethernet, 1394</th>
</tr>
</thead>
<tbody>
<tr>
<td>Video Standard</td>
<td>RS 170 & NTSC, CCIR & PAL, digital, Ethernet</td>
</tr>
<tr>
<td>Single Connector</td>
<td>128 pins</td>
</tr>
</tbody>
</table>

Controller

- Toplite Controller & Display, MCB (Main Computer Box optional)
Toplite EOS for Airborne Applications

The highly stabilized Toplite EOS uses a wide array of sensors, including laser designator and laser spot detector & tracker, enabling advanced ISR and targeting when combined with precision weapon systems. The system can be provided in a standalone mode or fully integrated into the aircraft avionics and CUAS missions. For higher level of operation and command & control, a moving map and data link are provided as options.

Typical Platforms
- Helicopters: S&R, attack, utility
- Surveillance and reconnaissance aircraft
- Transport and utility aircraft
- UAVs
- Aerostats

Toplite EOS for Ground Applications

On the ground, Toplite EOS is used for reconnaissance missions on manned and unmanned vehicles, border protection, strategic and high value facilities protection, and for identification/verification of potential targets or long distance threats. After threat identification, Toplite EOS is capable of slaving and directing other systems (C2, Radar, EW, weapon stations) to target location for appropriate response. Toplite and the image processing package provide exceptional situational awareness for operational forces.

Typical Platforms
- Reconnaissance & surveillance vehicles
- Combat vehicles
- Air defense systems
- Stationary posts
- Unmanned Ground Vehicle (UGV)

Toplite EOS for Maritime Applications

Toplite EOS serves as a main electro-optical observation, surveillance, and identification system as well as an advanced targeting system for small attack boats through USVs and up to aircraft carriers in navies and maritime forces around the world. Toplite’s unique design, high performance, advanced tracker, specially designed for the naval environment and system robustness, provides excellent reliability, exceptional MTBF and a high performance EO system.

Typical Platforms
- Small attack craft
- Patrol boats
- Naval/coastal vessels of all kinds
- Harbor and maritime police
- USVs
- Oil & Gas Rigs

Toplite EOS Family

The Toplite family of electro-optic systems (EOS) is an advanced multi-sensor, multi-purpose, highly stabilized EO/ISR solution for homeland security and defense applications. It is used for a variety of applications on different platforms for intelligence/data collection, surveillance, reconnaissance and weapon direction.

Mature, proven and fielded in more than 20 countries in all branches of the armed forces, the Toplite EOS incorporates up to six sensors for detection, identification, and targeting in a single and sealed LRU, which contains the sensors, the electronic section, the advanced tracker and the stabilization subsystem.

Toplite EOS enables automatic or manual monitoring and investigation using its advanced control unit, Situational Awareness (SAW) and image processing package. Toplite EOS is derived from the Litening targeting and navigation pod, and therefore, enjoys all the latest developments made for the world’s leading targeting system.

Toplite EOS features an extensive growth potential, enabling its utilization for many years in a changing operational environment. This growth potential will be realized in advanced sensor integration and unique image enhancement techniques.

Toplite EOS and Image Processing Capabilities

Rafael is a world leader in the field of Real Time (RT) image processing algorithms and applications. These extensive capabilities provide added value to the Toplite EO system allowing RT applications such as: integration to any digital map, live video mosaic (airborne), panoramic view construction with Toplite’s video footprint and LOS overlaid on the panoramic view, automatic moving-target detection, super-resolution and other image improvement algorithms, digital image stabilization, turbulence compensation, simultaneous VIS & IR representation, single-camera stereoscopic video display, passive/active coordinate extraction from any window of operation and more.

Benefits
- Dramatically improves decision making and reaction time
- Enables Situational Awareness (SAW)
- Extends sensors performance beyond their physical limitations
- Advanced mission recording
- Improves mission planning, training, and debriefing